Период бесконечной дроби 1/n
Период дроби равен периоду в последовательности остатков (докажите это; в частности, надо доказать, что он не может быть меньше). Кроме того, в этой последовательности все периодически повторяющиеся все члены различны, а предпериод имеет длину не более n. Поэтому достаточно найти (n+1)-ый член последовательности остатков и затем минимальное k, при котором (n+1+k)-ый член совпадает с (n+1)-ым.